HISTOLOGY

Friday, October 27, 2006


H I S T O L O G Y


   



   

D A F T A R I S I

1. EPITEL DAN KELENJAR

JARINGAN EPITEL





Jaringan epitel terdiri dari kumpulan sel-sel yang sangat rapat susunannya sehingga membentuk suatu lembaran, maka disebut sebagai membran epitel atau disingkat sebagai epitel saja untuk membedakan dengan epitel kelenjar. Adhesi diantara sel-sel ini sangat kuat, membentuk lembaran sel yang menutupi permukaan tubuh dan membatasi atau melapisi rongga-rongga tubuh. Jaringan epitel tidak memiliki substansi interseluler dan cairannya sangat sedikit.

      


ISTILAH EPITEL

Istilah epithelium berasal dari kata epi yang berarti upon atau di atas dan thele yang berarti nipple atau punting.
Penggunaan istilah epitel meluas untuk semua bentuk lapisan yang terdiri atas lembaran sel-sel (cellular membrane) baik yang bersifat tembus cahaya ataupun yang tidak. Dengan berkembangnya pemakaian mikroskop, maka istilah epitel tidak terbatas pada kumpulan sel yang membentuk membran yang menutupi, tetapi juga digunakan untuk kelenjar. Hal tersebut didukung dengan hasil penelitian embriologis yang menyimpulkan bahwa sel-sel epitel pada permukaan tumbuh ke dalam jaringan pengikat di bawahnya dan berkembang menjadi kelenjar.

Epitel dalam arti luas dikelompokan menjadi :

1. Jaringan yang sel-selnya tersusun dalam lapisan yang menutupi permukaan luar atau melapisi rongga di dalam tubuh yang dinamakan epitel permukaan, mereka dapat digolongkan sesuai jumlah lapisan sel dan morfologi sel pada lapisan permukaan.

2. Jaringan epitel yang tumbuh ke dalam jaringan pengikat menjadi epitel kelenjar, jaringan epitel kelenjar meliputi sel-sel dengan fungsi khusus menghasilkan cairan sekresi yang komposisinya berbeda dari darah atau cairan interseluler. Proses ini biasanya disertai proses makromolekul intraseluler. Persenyawaan ini biasanya ditampung di dalam sel dalam vesikel-vesikel kecil bermembran yang disebut granul sekresi.

ASAL EPITEL

Epitel dapat berkembang dari ketiga lapis embrional. Epitel yang melapisi kulit, mulut, hidung, dan anus berasal dari ektoderm. Pelapis sistem pernapasan, saluran cerna, dan kelenjar dari saluran cerna (misalnya, pancreas dan hati) berasal dari endoderm. Epitel lainnya (misalnya, endotel pelapis pembuluh darah) berasal dari mesoderm. Pada umumnya mesoderm ini akan menjadi jaringan pengikat atau otot. Epitel yang berbentuk membran dan berasal dari mesoderm ada dua macam yaitu :

1. Endothelium
Endotel merupakan susunan sel-sel yang membatasi permukaan dalam pembuluh darah, jantung dan pembuluh limfe.
2. Mesothelium
Mesotel merupakan susunan sel-sel yang membatasi rongga tubuh yang besar yang menutupi beberapa organ tertentu seperti yang melapisi peritoneum, pleura, dan pericardium.

Fungsi umum membran epitel :
1. Proteksi
Sebagai pelindung untuk melapisi permukaan dalam dan luar tubuh.
2. Absorbsi
Epitel yang membatasi permukaan dalam usus selain berfungsi sebagai pelindung juga berperan dalam proses penyerapan hasil-hasil pencernaan makanan.
3. Lubrikasi
Sebagian besar saluran-saluran dalam tubuh permukaannya harus tetap basah, sehingga epitel yang menutupi harus mampu menghasilkan cairan tertentu, misalnya epitel yang melapisi vagina.
4. Sekretori
Dalam hal ini epitel tersebut bertindak sebagai kelenjar.

NUTRISI JARINGAN EPITEL

Pada umumnya jaringan epitel tidak memiliki pembuluh darah sehingga nutrisi untuk sel-sel didapatkan dengan cara tidak langsung. Nutrisi dan O2 yang berasal dari kapiler pada jaringan pengikat di bawah epitel harus lebih dulu menembus membrana basalis, selanjutnya nutrisi akan menyebar ke seluruh bagian epitel dengan cara difusi melalui substasi interseluler.

BENTUK SEL EPITEL

Sel-sel epitel dalam keadaan hidup dapat berubah bentuknya untuk mengikuti perubahan permukaan yang ditutupinya. Kalau permukaannya mengkerut, bentuk sel-sel epitelnya menjadi lebih tinggi dan sebaliknya kalau permukaannya meluas, bentuk sel-sel akan lebih rendah.

Pada umumnya dibedakan adanya 3 macam bentuk sel epitel yaitu :

1. Sel gepeng
Bentuknya seperti sisik ikan maka disebut squamous cell. Pada potongan tegak lurus permukaan epitel tampak bentuk sel yang memanjang dengan bagian tengahnya yang berisi inti lebih menebal. Apabila dilihat dari permukaan epitel, sel-selnya tampak berbentuk poligonal.

2. Sel kuboid
Sel kuboid mempunyai ukuran tebal dan panjang yang sama sehingga tampak sebagai bujur sangkar. Dari permukaan epitel, bentuk selnya tampak poligonal.

3. Sel silindris
Sel silindris mempunyai ukuran tinggi yang melebihi ukuran lebarnya. Dari permukaan epitel, bentuk selnya poligonal. Biasanya inti yang berbentuk oval agak ke basal.


Berdasarkan susunan sel-sel yang membentuk epitel, dibedakan menjadi :

1. Epitel gepeng selapis (Epithelium squamous simplex, simple squamous epithelium).

Seluruh sel yang menyusun epitel ini berbentuk gepeng dan tersusun dalam satu lapisan. Batas-batas sel baru jelas apabila sediaan diwarnai dengan AgNO3. Epitel jenis ini terdapat, misalnya pada : permukaan dalam membrane tympani, lamina parietalis capsula bowmani, Rete testis, Pars descendens ansa henlei pada ginjal, mesotil yang membatasi rongga serosa, endotel yang membatasi permukaan sistem peredaran, duktus alveolaris dan alveoli paru-paru.


2. Epitel kuboid selapis (Epithelium cuboideum simplex, simple cuboidal epithelium).

Susunan epitel ini terdiri atas selapis sel yang berbentuk kuboid dengan inti yang bulat ditengah, epitel ini dapat dijumpai pada pleksus coroideus, diventriculus otak, folikel glandula thyreoidia, epithelium germanitivum, pada permukaan ovarium, epithelium pigmentosum retinae dan duktus ekskretorius beberapa kelenjar.


3. Epitel silindris selapis (Epithelium cilindricum simplex, simple columnar epithelium).

Epitel jenis ini terdiri atas selapis sel-sel yang berbentuk silindris sehingga inti yang berbentuk oval tampak terletak pada satu deretan. Epitel ini dapat ditemukan pada permukaan selaput lendir tractus digestivus dari lambung sampai anus, vesica fellea, dan ductus excretorius beberapa kelenjar. Pada beberapa tempat tempat kadang-kadang pada permukaan selnya mengalami modifikasi yaitu dengan adanya silia, misalnya dapat dijumpai pada permukaan uterus dan bronchiolus.
Epitel pada permukaan usus selain berfungsi sebagai pelindung juga berfungsi sekresi karena diantaranya terdapat sel-sel yang mampu menghasilkan lendir. Pada beberapa tempat terdapat epitel yang hampir seluruhnya terdiri atas sel kelenjar yang berbentuk sebagai piala, sehingga dinamakan sebagai Sel Piala.

4. Epitel gepeng berlapis (Epithelium squmosum complex, stratified squamos epithelium).

Epitel ini lebih tebal dari epitel selapis. Bentuk gepeng pada sel epitel ini hanyalah sel-sel yang terletak pada lapisan permukaan, sedangkan sel-sel yang terletak lebih dalam bentuknya berubah. Sel-sel yang terletak paling basal berbentuk kuboid atau silindris melekat pada membrana basalis. Di atas sel-sel silindris ini terdapat lapisan sel yang berbentuk polihedral yang makin mendekati permukaan makin memipih.
Epitel ini cocok untuk fungsi proteksi, tetapi kurang cocok untuk fungsi sekresi. Jika pada permukaan epitel gepeng berlapis terdapat cairan, maka cairan tersebut bukan berasal dari epitel melainkan berasal dari kelenjar yang terdapat di bawah epitel.

Epitel jenis ini dapat dibedakan menjadi dua macam yaitu :

v Epitel gepeng berlapis tanpa keratin
Epitel jenis ini terdapat pada permukaan basah, misalnya pada cavum oris, oesophagus, cornea, conjunctiva, vagina, dan urethra feminine.

v Epitel gepeng berlapis berkeratin
Struktur jenis ini mirip dengan epitel gepeng berlapis tanpa keratin, tetapi terdapat perubahan pada sel-sel permukaannya yang menjadi suatu lapisan yang mati dan tidak jelas lagi batas-batas selnya. Lapisan permukaan tersebut dinamakan lapisan keratin. Jenis epitel ini dapat ditemukan pada epidermis kulit.

Lapisan-lapisan sel pada epidermis kulit adalah sebagai berikut :

a. Stratum basale
Merupakan selapis sel berbentuk silindris pendek yang terletak pada lapisan paling bawah. Dalam sitoplasmanya terdapat butir-butir pigmen melanin.

b. Stratum spinosum
Lapisan ini terdiri dari beberapa lapis sel yang berbentuk polihedral. Pada pengamatan dengan menggunakan mikroskop cahaya terlihat seakan-akan sel-selnya berduri (spina) yang sebenarnya disebabkan adanya bangunan yang disebut desmosome. Adanya desmosome menyebabkan eratnya hubungan antar sel.

c. Stratum granulosum
Lapisan ini terdiri dari 2-4 lapis sel yang berbentuk belah ketupat dengan sumbu panjangnya sejajar permukaan. Di dalam selnya terdapat butir-butir keratohialin, oleh karena mulai lapisan ini terjadi perubahan-perubahan fisiologis.

d. Stratum lucidum
Lapisan ini terkadang tidak jelas karena tampak sebagai garis jernih yang homogen. Sebenarnya lapisan ini terdiri atas sel-sel tidak berinti yang telah mati dan mengandung zat eleidin dalam sitoplasmanya.

e. Stratum corneum
Merupakan lapisan teratas dari epidermis. Pada lapisan ini zat eleidin telah berubah menjadi keratin. Bagian terluar dari lapisan ini, terdapat bagian-bagian epidermis yang dilepaskan sehingga merupakan lapisan tersendiri yang disebut dengan Stratum disjunctum.

5. Epitel silindris berlapis (Epithelium cilindricum complex, stratified columnar epithelium).

Epitel ini terdiri atas beberapa lapisan sel dengan lapisan yang teratas berbentuk silindris dan bagian basal selnya tidak mencapai membran basalis. Lapisan sel-sel di bawah sel silindris berbentuk lebih pendek bahkan bagian yang terbawah berbentuk kuboid. Jenis epitel ini dapat ditemukan pada peralihan oropharing ke laring, fornix conjunctivae, urethra pars cavernosa dan ductus excretorius beberapa kelenjar. Pada beberapa tempat tertentu permukaan sel dari lapisan teratas dilengkapi dengan silia, seperti pada facies nasalis palatum molle, laring dan oesophagus dari fetus.

6. Epitel cuboid berlapis (Epithelium cuboideum complex ).

Merupakan epitel berlapis yang terdiri atas sel-sel permukaan yang berbentuk kuboid. Jenis epitel ini tidak terlalu banyak di dalam tubuh yaitu pada ductus excretorius glandula parotis dan dinding anthrum folliculi ovarii.

7. Epitel silindris bertingkat (Epithelium cilindricum pseudocomplex, epitel silindris berlapis semu).

Pada jenis epitel ini, semua sel-sel yang menyusunnya mencapai membrane basalis. Tinggi sel-sel penyusunnya tidak sama sehingga letak inti-inti selnya nampak bertingkat atau berlapis. Sel-sel yang berukuran pendek memiliki inti yang pendek dan berfungsi sebagai penyokong.
Epitel jenis ini mempunyai modifikasi dengan adanya silia pada permukaan sel yang berukuran tinggi, sehingga epitel ini disebut sebagai epitel silindris bertingkat bersilia. Epitel ini dapat ditemukan pada trachea, bronchus yang besar, dan ductus deferens. Pada trachea sel-sel yang mencapai permukaan terdapat dua jenis yaitu sel bersilia dan sel piala (Goblet cell) sebagai sel kelenjar.


8. Epitel transisional (Transisional epithelium ).

Epitel ini merupakan bentuk peralihan tergantung dari keadaan ruangan organ yang dibatasi. Epitel jenis ini cocok untuk melapisi permukaan suatu organ berongga yang selalu mengalami perubahan volume seperti kandung kemih dan juga saluran kemih mulai dari calyces renales sampai sebagian dari urethra.
Sel-sel paling basal dari epitel tersebut berbentuk kuboid atau silindris. Sel-sel yang terdapat diatas lapisan basal terdiri atas sel-sel yang berbentuk polihedral yang kemudian dilanjutkan dengan sel-sel yang berbentuk sebagai buah labu atau bola lampu dengan bagian bulat menuju ke arah permukaan. Sel-sel ini bentuknya menyesuaikan dengan bentuk sel permukaan yang dapat berubah. Pada lapisan teratas, bentuk selnya cembung dan berukuran besar mirip payung tanpa tangkai sehingga dinamakan Sel Payung. Bagian bawah dari sel payung bentuknya cekung sesuai dengan permukaan bulat dari sel berbentuk labu. Permukaan sel payung dilengkapi dengan crusta yang dapat berfungsi untuk melindungi terhadap cairan kemih yang berada dalam rongga.


STRUKTUR PENYOKONG DALAM SEL EPITEL

Dalam sitoplasma sel epitel, terdapat organela yang berfungsi sebagai rangka penyokong, diantaranya sebagai anyaman yang dinamakan cell web. Distribusi bahan-bahan fibriler tersebut berbeda pada masing-masing jenis sel epitel, misalnya dalam sel-sel epitel untuk absorbsi seperti pada epitel usus, sebagian besar dari struktur fibriler berkumpul di bawah permukaan bebas sel tepat di bawah mikrovili, fibril yang membentuk anyaman tersebut dinamakan terminal web.
Di dalam sediaan epidermis kulit sering terlihat bangunan yang dinamakan tonofibril yang merupakan kumpulan berkas-berkas filamen. Filamen-filamen yang membentuk terminal web atau cell web melekat pada suatu daerah yang pada permukaan selnya terdapat struktur yang dinamakan desmosom.

STRUKTUR KHUSUS PADA SISI SEL EPITEL

Pengkhususan struktur pada sisi sel merupakan modifikasi permukaan sehingga memenuhi fungsi hubungan dalam berbagai bentuk. Bentuk khusus tersebut misalnya untuk kemantapan dalam kedudukannya, untuk mengisi celah antar sel pada tempat tertentu, dan untuk merambatkan listrik.
Bentuk khusus pada permukaan sel biasanya dinamakan berdasarkan pada ukuran dan bentuk daerah yang mengalami pengkhususan tersebut. Macula merupakan daerah kecil berupa bercak, sedangkan yang dimaksud dengan zonula adalah jika daerah tersebut melingkari sel sebagai gelang dan bila daerahnya luas maka dinamakan fascia.
Jarak antara permukaan sel-sel yang berhadapan menjadi dasar dalam penamaan pada struktur khusus sel epitel. Pada umumnya jarak membran plasma dari sel-sel epitel yang berdekatan berkisar antara 150 Å- 200 Å. Istilah adhaeren digunakan untuk struktur khusus pada membran sel yang berdekatan dengan jarak antara 200 Å-250 Å. Di dalam celah antar sel tersebut berisi bahan yang diduga berguna untuk melekatkan satu sama lain. Istilah occludens digunakan untuk sel-sel yang berhadapan dimana masing-masing membran plasmanya berhimpit langsung tanpa dipisahkan oleh celah. Jenis hubungan ini biasanya dinamakan juga sebagai tight junction atau pentalaminar junction. Gap junction merupakan bentuk hubungan antar sel yang dipisahkan oleh celah yang sempit sebesar 20 Å.
Atas dua dasar tersebut maka jenis hubungan dapat dinamakan sebagai berikut :

1. Desmosome (macula adhaerens)

Desmosome atau macula adhaerens biasanya berbentuk bulat atau oval. Hubungan tersebut memberikan kesan bahwa dua sel yang berdekatan tersebut menempel satu sama lain. Fungsi desmosome adalah sebagai tempat perlekatan mekanik antar dua sel yang berdekatan. Bentuk ini banyak dijumpai pada epitel berlapis yang banyak mengalami tekanan, seperti pada epidermis dan cervix. Bila jumlah desmosome berkurang, maka sel-sel tersebut mudah terlepas seperti pada kelainan kulit tertentu. Desmosome yang bukan merupakan hubungan antar dua sel seperti yang terdapat pada bagian dasar sel epitel yang berdekatan dengan jaringan pengikat di bawahnya, maka bentuknya tidak menunjukkan gambaran yang simetris, melainkan hanya separuhnya saja yang disebut dengan hemidesmosome.


2. Terminal bar (junctional complex)

Terminal bar merupakan serangkaian bentuk pengkhususan dari membran sel berbentuk sebagai : zonula occludens, zonula adhaerens, dan serangkaian desmosome. Tight junction pada terminal bar mempunyai struktur khas, yaitu menunjukkan pola rigi-rigi yang beranyaman pada permukaannya. Daerah zonula adhaerens dari terminal bar tersebut biasanya mempunyai sifat-sifat sebagai macula adhaerens kecuali daerah yang melingkari sekeliling sel. Fungsi zonula occludens adalah untuk memisahkan celah ekstraseluler dengan lumen yang dibatasi oleh epitel bersangkutan, sedangkan fungsi zonula adhaerens adalah untuk pelekatan mekanik antar sel yang berdekatan pada epitel atau jaringan lain seperti pada otot jantung.

3. Gap junction

Gap junction merupakan hubungan interseluler yang mempunyai kategori hubungan komunikasi antar sel. Gap junction tersusun oleh molekul-molekul protein yang menonjol dari membrane sel membentuk suatu struktur yang membatasi saluran yang dinamakan connexon. Connexon ini diduga menghubungkan antara dua sel yang berdampingan melalui isi yang mengalir di dalamnya. Connexon ini berukuran separuh dari panjang saluran yang dibentuk. Kedua connexon tersebut bertemu sedemikian rupa sehingga antara dua membran sel yang berhadapan dipisahkan oleh celah (gap) sebesar 2-4 nm. Saluran dalam gap junction dapat mengalirkan molekul-molekul yang larut dalam air antara sel-sel yang berdekatan, sehingga gap junction dapat dikatakan menghubungkan sel-sel secara metabolisme dan listrik.

STRUKTUR KHUSUS PADA PERMUKAAN BASAL SEL EPITEL

Membrana basalis merupakan kondensasi bahan mukopolisakarida dan protein yang terdapat di bawah permukaan basal semua epitel dengan ketebalan yang berbeda-beda. Membrana basalis yang paling tebal terdapat di bawah epitel yang sering mengalami gesekan seperti epidermis kulit. Membrane basalis berfungsi sebagai penyokong dan bertindak sebagai filter yang semipermeabel dari bagian basal epitel.

Dengan menggunakan mikroskop electron, membrane basalis dapat dibedakan dalam :

1. Lamina basalis
Ketebalannya antara 500 Å- 1000 Å yang merupakan anyaman padat filament halus.

2. Lamina reticularis
Terdapat dibawah lamina basalis yang merupakan anyaman serat-serat retikuler dalam substansi dasar. Terkadang ditemukan serat elastis diantaranya, misalnya pada membrane basalis epitel trachea.
Menurut beberapa peneliti, lamina basalis dibentuk oleh sel-sel epitel, sedangkan lamina retikularis dibentuk oleh jaringan pengikat. Dari permukaan basal sel-sel epitel terdapat tonjolan-tonjolan yang masuk ke dalam jaringan pengikat di bawahnya. Hal ini merupakan factor penguat perlekatan epitel pada jaringan pengikat, terutama untuk epitel gepeng berlapis dan epitel transisisonal. Bangunan lain yang terdapat pada bagian basal adalah hemidesmosom yang berfungsi sebagai penguat perlekatan epitel pada jaringan pengikat.

STRUKTUR PADA PERMUKAAN BEBAS EPITEL

1. Mikrovili

Merupakan tonjolan sitoplasma berbentuk silindris yang terdapat pada permukaan bebas sel epitel. Tonjolan-tonjolan tersebut dinamakan secara berbeda-beda, misalnya yang terdapat pada tubulus contortus proximalis, plexus choroideus, dan placenta sebagai brush border karena bentuknya seperti bulu sikat. Tonjolan yang terdapat pada epitel usus karena tampak bergaris-garis dinamakan striated border. Pada permukaan sebuah sel mungkin ditemukan sebanyak 2000 mikrovili. Fungsi dari mikrovili adalah untuk memperluas permukaan agar dapat meningkatkan daya absorbsi sel-sel epitel usus. Pada permukaan mikrovili usus terdapat suatu enzim yang dapat memecahkan bahan makanan agar dapat diabsorbsi.

2. Stereocilia

Stereocilia merupakan jenis mikrovili yang berukuran sangat panjang. Jenis mikrovili ini terdapat pada permukaan epitel duktus epididimis dan duktus deferens yang berfungsi mengatur keadaan lingkungan untuk pematangan sperma.

3. Kinocilia

Kinocilia atau yang biasa disebut dengan cilia, merupakan tonjolan yang berbentuk sebagai bulu halus dan bersifat motil (bergerak). Kemampuan bergerak tersebut disebabkan karena adanya struktur halus yang berbeda dengan stereocilia. Sebuah cilium tertanam dalam suatu bangunan yang dinamakan corpusculum basale. Ukuran panjang kinocilia berkisar antara 5-10 µm dengan diameter 0,2 µm. cilia dapat ditemukan pada epitel tractus respiratorius, oviduct, dan uterus.

4. Crusta

Bangunan ini merupakan pemadatan sitoplasma di dekat permukaan bebas sel epitel misalnya pada epitel transisional dengan maksud melindungi sel terhadap pengaruh kimiawi di luarnya.

5. Cuticula

Struktur ini merupakan bahan yang disekresikan oleh sel epitel yang kemudian diletakkan sebagai kerak di luar sel epitel. Struktur khusus ini dapat ditemukan sebagai capsula lentis.
POLARITAS SEL-SEL EPITEL
Polaritas sel epitel adalah keadaan yang berbeda antara bagian puncak dan dasar epitel. Salah satu contohnya adalah sel silindris pada epitel usus yang berfungsi untuk absorbsi makanan. Di bagian puncak sel terdapat tetes-tetes lemak, kompleks golgi dan lebih banyak mengandung mitokondria dengan mikrovili pada permukaaan bebasnya, sedangkan pada tubulus contortus ginjal, mitokonria lebih banyak dibagian dasar sel.


KELENJAR

Kelenjar adalah suatu sel atau beberapa sel tubuh yang menghasilkan substansi khusus untuk bagian lain dari tubuh.

KLASIFIKASI KELENJAR

I. KELENJAR EKSOKRIN

Kelenjar ini mempunyai saluran keluar untuk mengangkut hasil kelenjarnya dan selanjutnya bermuara pada permukaan dalam dan luar tubuh. Secara morfologik kelenjar eksokrin dapat digolongkan menurut dasar tertentu. Berdasarkan jumlah sel yang menyusunnya, maka dapat digolongkan ke dalam :

a. Kelenjar uniseluler
Kelenjar jenis ini tidak memiliki saluran keluar, karena biasanya terdapat pada epitel permukaan, misalnya pada epitel usus sebagai sel piala.

b. Kelenjar multiseluler
Berdasarkan letak kelenjarnya terhadap epitel permukaan, maka jenis kelenjar ini dibedakan menjadi :

· Kelenjar intraepitelial,
yaitu membentuk kelompok sel kelenjar pada epitel permukaan tanpa saluran kelenjar. Kelenjar jenis ini dapat dijumpai pada epitel selaput lendir lambung dan rongga hidung.

· Kelenjar ekstraepitelial,
jenis kelenjar ini merupakan kelenjar yang terdapat dalam jaringan pengikat.

Jenis kelenjar ini dapat dibedakan menjadi dua bagian yaitu :
1. Pars secretoria, yaitu bagian yang menghasilkan sekret
2. Ductus excretorius, yaitu saluran yang menampung sekret dari pars secretoria.


Dengan memperhatikan bentuk pars secretoria dan ductus excretorius dalam tubuh dikenal berbagai jenis kelenjar yaitu :

1) Kelenjar tubuler sederhana (simple tubular gland)
a. Kelenjar tubuler lurus (kelenjar usus besar)
b. Kelenjar tubuler bergelung (glandula subdorifera)
c. Kelenjar tubuler bercabang (glandula uterina)

2) Kelenjar tubuloalveoler sederhana (simple tubuloalveoler gland)
Kelenjar ini selalu bercabang (glandula submandibularis, glandula duodenalis brunneri).

3) Kelenjar alveolar sederhana (simple alveolar gland)
Contoh kelenjar ini yaitu glandula sebacea yang terdapat pada kulit dan merupakan kelenjar polyptyche yang mempunyai modifikasi pada kelopak mata sebagai glandula meibomi yang termasuk sebagai kelenjar alveolar sederhana bercabang .

4) Kelenjar tubuler kompleks (compound tubular gland)
Kelenjar ini mempunyai pars secretoria berbentuk tubuler dengan saluran keluarnya yang bercabang dan akhirnya bermuara dalam satu saluran utama contohnya testis.

Berdasarkan jumlah lapisan sel epitel pars secretorianya dapat dibedakan menjadi kelenjar

monoptyche, yang terdiri atas satu lapis sel (misalnya kelenjar keringat) dan kelenjar polyptyche, yang terdiri atas beberapa lapis sel (misalnya glandula sebacea).

Berdasarkan sifat sekretnya, kelenjar eksokrin dapat dibedakan menjadi :

kelenjar sitogen, yaitu kelenjar yang menghasilkan sel-sel sebagai sekretnya (misalnya testis dan ovarium) dan

kelenjar nonsitogen, yaitu kelenjar yang hasilnya tidak mengandung sel-sel.

Kelenjar nonsitogen ini dapat dibagi lagi menjadi tiga bagian yaitu :

1) Kelenjar mukosa
Sekret kelenjar mukosa bersifat kental. Bentuk sel kelenjarnya pyramidal dengan bagian puncaknya berisi tetes-tetes bahan musinogen atau premusin sebagai pembentuk lendir.

2) Kelenjar serosa

Sekret kelenjar serosa bersifat encer, jernih yang berbentuk sebagai albumin. Terkadang sekret tersebut mengandung enzim seperti pada kelenjar pancreas dan parotis.
Sel kelenjar serosa berbentuk pyramidal dengan inti berbentuk bulat yang terletak agak ditengah. Pada bagian basal sel terdapat glanular endoplaspic reticulum sehingga pada pengamatan dengan menggunakan mikroskop cahaya tampak gambaran yang bergaris-garis.

3) Kelenjar campuran

Merupakan kelenjar campuran dari sel-sel kelenjar mukosa dan serosa. Kadang-kadang sel serosa terdesak oleh sel mukosa sehingga membentuk gambaran bulan sabit yang dinamakan demiluna gianuzzi. Contoh dari kelenjar ini adalah glandula submandibularis dan glandula sublingualis.

Berdasarkan cara sekresinya, dikenal tiga macam kelenjar yaitu :

1) Kelenjar merokrin
Pada saat sekresi tidak akan terjadi kerusakan pada selnya ataupun tidak ada bagian sel yang ikut disekresikan (glandula subdorifera).

2) Kelenjar apokrin
Kelenjar jenis ini pada saat sekresi, ada sebagian dari puncak sel ikut bersama-sam disekresikan sehingga tampak adanya tonjolan-tonjolan di bagian pucak sel kelenjar (glandula axillaris dan glandula circumanale).

3) Kelenjar holokrin
Kelenjar jenis ini akan mengalami kerusakan pada waktu melangsungkan sekresi sehingga sekretnya bercampur dengan bagian sel yang telah mati (glandula sebacea).

SEL MIO-EPITEL

Sel ini berasal dari epitel tetapi bersifat kontraktil seperti sel otot. Sel tersebut terletak diantara membrane basalis dan sel-sel epitel kelenjarnya. Sel mio-epitel diduga berfungsi untuk membantu mendorong sekret kelenjar ke dalam duktus excretorius, terlihat adanya tonjolan-tonjolan sitoplasma yang panjang mengelilingi pars secretoria membentuk anyaman sebagai keranjang.

ORGANISASI HISTOLOGIS KELENJAR EKSOKRIN

Pada umumnya kesatuan-kesatuan kelenjar bergabung membentuk kelenjar besar, sehingga masing-masing ductus excretoriusnya bermuara ke dalam saluran yang lebih besar. Seluruh kelenjar tersebut di bungkus oleh kapsel jaringan pengikat yang melanjutkan masuk ke dalam bagian dalam dari kelenjar sehingga seluruh kelenjar tersebut dibagi-bagi dalam lobus dan jaringan pengikat yang membatasi dinamakan septum interlobaris. Selajutnya jaringan pengikat tersebut juga membagi-bagi kelenjar dalam satuan yang lebih kecil yang dinamakan lobulus.
Pada beberapa kelenjar, tampak bahwa beberapa septum seolah-olah menuju ke satu arah yaitu kearah saluran utama memasuki kelenjar. Saluran utama kelenjar tersebut menerima saluran dari setiap lobus yang dinamakan duktus lobaris. Saluran ini menerima duktus interlobularis yang berjalan dalam septum interlobularis. Duktus interlobularis menerima saluran yang lebih kecil dari lobulus yang dinamakan duktus intralobularis yang hanya sedikit dibungkus oleh jaringan pengikat. Duktus intralobularis menerima sekret kelenjar melalui duktus intercalaris yang menampung langsung dari pars secretoria atau melalui canalicali intercellularis yang merupakan celah-celah diantara masing-masing sel-sel kelenjar.

II. KELENJAR ENDOKRIN

Kelenjar ini tidak memiliki saluran keluar, disebut juga dengan kelenjar buntu. Hasil dari kelenjar ini diangkut oleh pembuluh darah atau pembuluh limfe. Pada umumnya kelenjar endokrin terdapat anyaman kapiler yang berhubungan langsung dengan sel-sel kelenjar. Susunan sel-sel kelenjar dapat tersebar dalam anyaman kapiler atau membentuk kelompok-kelompok.
Oleh karena hormon sebagai hasil kelenjar endokrin dalam kadar yang sangat rendah sudah menunjukkan pengaruhnya, maka hormon tersebut tidak selalu harus diangkut oleh pembuluh darah, namun harus di timbun terlebih dahulu. Penimbunan pada hormon pada tingkat pertama dapat dilakukan intraseluler sebagai butir-butir sekresi yang selanjutnya dapat ditimbun ekstraseluler di dalam celah-celah antar sel kelenjar atau dibatasi dalam suatu bentuk ruang yang dinamakan folikel (glandula thyroidea).
Tidak semua kelenjar endokrin disusun dalam kesatuan kelenjar khusus, melainkan tersebar dalam suatu organ (testis, ovarium, dan selaput lendir usus). Sebagian kelenjar endokrin membentuk suatu kesatuan yang dibungkus oleh jaringan pengikat (hypophisis cerebri).
Ada bentuk khusus dari kelenjar endokrin yang merupakan campuran kelenjar endokrin-eksokrin. Jenis kelenjar ini terdapat pada pancreas dimana kelenjar endokrin sebagai pulau-pulau diantara kelenjar eksokrin. Kelenjar endokrin sebagai insula langerhans.

Bahan Kuliah Mahasiswa FKG-UNPAD
Sumber : Prof. Subowo dr., Msc., PhD

2. JARINGAN PENGIKAT

Jaringan pengikat dapat disebut juga connective tissue, jaringan penyokong atau anyaman penyokong.

Jaringan Pengikat dapat dibagi ke dalam 3 kategori :

1. Jaringan Pengikat Sebenarnya
2. Jaringan Pengikat Penyokong : Kartilago dan Tulang
3. Jaringan Pengikat dengan Fungsi Khusus : Darah

Sedangkan fungsinya yaitu :
1. mengikat, menghubungkan dan mengisi celah antara jaringan lain
2. sebagai penyokong atau penopang
3. berfungsi khusus

Komponen-komponen yang menyusun jaringan pengikat terdiri atas :

- sel
- substansi dasar
- komponen fibriler

1. SEL
Jaringan pengikat mempunyai bermacam-macam sel terutama dalam jaringan pengikat longgar.

2. SUBSTANSI DASAR
Substansi dasar merupakan substansi yang amorf tempat komponen-komponen lain dari jaringan pengikat terendam. Karl Meyer menyelidiki sifat-sifat kimiawi dari substansi interseluler yang menuntun kepada penemuan komponen utama dari substansi dasar semacam mukopolisakharida yang merupakan karbohidrat. Ternyata mukopolisakharid ini terdiri atas Asam hialuronik yang tidak bergugus sulfat dan Asam Khondroitin sulfurik.

3. KOMPONEN FIBRILER
Dengan mikroskop cahaya komponen fibriler dapat dibedakan dalam :
serabut kolagen
serabut elastis
serabut retikuler.

Serabut Kolagen
Terbentuk dari protein kolagen yang merupakan jenis protein paling banyak terdapat dalam tubuh. Diameternya antara 1 µm – 12 µm dengan rata-rata sebesar eritrosit (7,7 µm).
Serabut kolagen terdiri dari gabungan serabut-serabut yang lebih halus berdiameter 0,3 µm – 0,5 µm yang disebut fibril. Dalam keadaan segar serabut kolagen berwarna putih, oleh karena itu dinamakan pula sebagai serabut putih. Serabut kolagen tahan terhadap tekanan ataupun tarikan, tetapi tidak bersifat lentur. Dengan pewarnaan HE akan terwarna merah muda atau merah.

Serabut ElastisBahan yang menyusun serabut elastis adalah protein elastin yang bersifat sangat tahan terhadap pengaruh kimia. Dalam keadaan segar serabut ini berwarna kuning. Serabut elastis bersifat kenyal dan elastik.
Dengan pewarnaan HE tampak lebih merah jika dibandingkan dengan serabut kolagen. Serabutnya tipis dan panjang dengan ketebalan kurang dari 1 µm sampai beberapa mikron.

Serabut Retikuler
Dalam jaringan pengikat terdapat serabut-serabut halus yang saling berhubungan membentuk anyaman atau jala. Serabut ini banyak dijumpai sebagai kerangka dalam jaringan limfoid dan hemopoietik.

----------------------------------------------------------------

JARINGAN PENGIKAT SEBENARNYA

KLASIFIKASI JARINGAN PENGIKAT

Berdasarkan tingkat diferensiasi jaringan pengikat dapat dibedakan adanya:

1. jaringan pengikat embrional
2. jaringan pengikat dewasa

I. JARINGAN PENGIKAT EMBRIONAL

Dalam embrio terdapat dua jenis jaringan embrional yaitu :
- jaringan mesenkhim dan
- jaringan mukosa.

Jaringan mesenkhim semula terdapat sebagai jaringan pengisi antara lapisan entoderm dan ektoderm dalam embrio. Jaringan inilah yang banyak berkembang menjadi jaringan dasar dewasa khususnya menjadi jaringan pengikat.
Gambaran histologisnya sangat khas, karena sebagian besar tersusun secara longgar sel-sel yang mempunyai tonjolan sitoplasma yang saling berhubungan. Dalam keadaan hidup celah-celah antara sel diisi oleh mukopolisakharid. Kadang-kadang di antara sel-sel tersebut sudah tampak fibril halus.

Jaringan mukosa juga merupakan jaringan embrional hanya terdapat dalam tali pusat, humor vitreus dalam bola mata. Bentuk sel yang menyusunnya berbentuk oval stelat dengan inti berbentuk sesuai dengan bentuk selnya. Di antara sel-selnya tampak serabut-serabut kolagen dan terdapat bahan yang lebih cair yang menyerupai lendir. Pada tali pusat bahan tersebut dinamakan Wharton jelly.

II. JARINGAN PENGIKAT DEWASA

5 jenis jaringan pengikat dewasa yaitu :
- jaringan pengikat longgar,
- jaringan pengikat padat,
- jaringan pengikat retikuler,
- jaringan pengikat berpigmen, dan
- jaringan lemak.

a. Jaringan pengikat longgar

Strukturnya longgar karena komponen sel-selnya dipisahkan oleh substansi interseluler yang nyata. Jaringan pengikat longgar dengan pembuluh kapilernya trsebar luas di seluruh tubuh biasanya memberikan tempat kedudukan bagi sel-sel epitel di atasnya untuk bertumpu atau di sekitar sel-sel kelenjar, serabut saraf. Jaringan pengikat longgar berfungsi untuk menyokong dan memberikan nutrisi kepada sel-sel otot.
Gambaran histologisnya yaitu adanya bermacam-macam sel yang tersebar berjauhan di antara serabut-serabut kolagen dan elastis yang tersusun tidak teratur. Biasanya serabut kolagen berada sebagai berkas-berkas bercabang dan serabut elastis yang lebih tipis tampak lebih kemerah-merahan.
Jenis sel yang terdapat di dalam jaringan pengikat longgar yaitu : fibroblas, sel lemak, plasmasit, makrofag, mastosit, sel-sel mesenkhimbelum berdiferensiasi, sel imigran dan sel pigmen.
Fibroblas
Sel ini berbentuk sebagai kumparan dengan bagian yang membesar mengandung inti yang berbentuk ovoid dengan butir-butir khromatin halus dan sebuah nukleolus. Sitoplasma fibroblas mempunyai tonjolan-tonjolan dan tampak pucat.
Sel yang masih muda lebih banyak tonjolan-tonjolannya. Sitoplasma sekeliling inti lebih basofil karena sel tersebut sedang aktif mensintesis protein. Fibroblas muda mampu mengadakan pembelahan sel. Fibroblas dewasa sedikit kemampuan untuk membelah.

Sel lemakApabila kelompok sel-sel lemak menjadi sangat besar maka terbentuk jaringan lemak. Sel lemak sangat mudah dibedakan terhadap jenis sel lain. Sel lemak telah dapat dibedakan sejak mulai terjadi penimbunan tetes-tetes lemak dalam sitoplasma sampai terjadinya penyatuan yang semakin membesar sehingga inti bersama sitoplasma terdorong ke tepi.

Plasmasit
Sel ini sangat erat hubungannya dengan sistem imunitas karena berasal dari perkembangan limfosit B yang akan menghasilkan antibody. Plasmasit mudah dikenal karena penampilannya yang khas yaitu : berbentuk bulat panjang, inti bulat yang terletak eksentrik. Susunan khromatin dalam inti menyerupai gambaran jari-jari roda, sitoplasma bersifat basofil karena aktif mensintesis antibody yang merupakan protein.

Sel Makrofag
Mempunyai kemampuan memangsa (fagositosis) oleh karena itu berperan dalam pertahanan tubuh. Sitoplasmanya mengandung lisosom yang mengandung enzim guna untuk melisiskan bakteri.
Bentuk sel biasanya oval tetapi tidak tetap. Inti terletak eksentrik. Makrofag berasal dari monosit dalam darah. Apabila benda yang akan difagositosis cukup besar maka beberapa sel makrofag berfusi membentuk sel raksasa atau sel benda asing.

Mastosit (Mast Cell)
Dinamakan mast cell karena terlihat sebagai sebuah sel yang besar yang terisi penuh dengan butir-butir.
Bentuk sel biasanya ovoid dengan inti bulat di tengah. Biasanya inti sulit terlihat karena tertutup oleh butir-butir yang memenuhi sel. Butir-butir tersebut mengandung bahan-bahan seperti heparin, histamin dan berbagai enzim yang diketahui berhubungan dengan gejala alergi anafilaksis.
Terlepasnya buti-butir yang mengandung berbagai zat aktif tersebut disebabkan oleh adanya alergen dan antibody dari kelas IgE yang menempel pada permukaan sel. Gejala yang timbul akibat terlepasnya butir-butir ini antara lain gatal-gatal, udem, sesak nafas.

Sel mesenkhim muda
Dalam jaringan pengikat longgar biasanya dapat diketemukan sel-sel mesenkhim yang belum mengalami diferensiasi.

Sel imigran
Yang dimaksud dengan sel imigran yaitu berbagai jenis sel yang biasanya tidak dijumpai dalam jaringan pengikat longgar tetapi merupakan pendatang dari luar misalnya leukosit, limfosit, monosit.

b. Jaringan Pengikat Padat

Tergantung pada keteraturan komponen serabut penyusunnya, jaringan pengikat padat dibedakan dalam : jaringan pengikat padat ireguler dan jaringan pengikat padat reguler.

Jaringan Pengikat Padat Ireguler

Berfungsi sebagai pembungkus berbagai organ, tendo, serabut saraf, otot dan sebagai dermis pada kulit. Gambaran jaringan ini menunjukkan lalu lalangnya serabut kolagen dari berbagai ukuran dengan sel-sel yang tidak begitu banyak jumlahnya.

Jaringan Pengikat Padat Reguler

Gambarannya sangat berbeda karena komponen fibriler berjalan dalam arah yang sama sesuai dengan kebutuhan mekanik yang diperlukan. Tergantung pada serabut yang paling menonjol dibedakan menjadi : jaringan pengikat padat kolagen reguler dan jaringan pengikat padat elastis.

1. Jaringan Pengikat Padat Kolagen Reguler

Sebagian besar serabut-serabutnya dari jenis kolagen misalnya terdapat sebagai tendo, ligamentum, fascia, aponeurosis dan cornea. Pada tendo terlihat jelas kolagen tersusun memanjang padat. Di antara berkas-berkas serabut kolagen terdapat fibroblas yang seakan-akan terhimpit. Badan sel menjadi lebih panjang dengan tonjolan-tonjolan yang melebar di antara berkas kolagen. Karena tonjolan-tonjolannya seperti sayap maka disebut Flugel Zell (sel sayap).

2. Jaringan Pengikat Padat Elastis

Jaringan pengikat ini misalnya terdapat sebagai : ligamentum flavum, ligamentum vocale, ligamentum nuchae dan ligamentum stylohyoideum. Pada potongan memanjang tampak berkas-berkas serabut elastis tersusun sangat rapat dengan sel-sel fibroblas tersebar di antaranya. Pada potongan melintang jelas sekali adanya sel-sel fibroblas yang terhimpit di antara berkas-berkas serabut elastis yang berbentuk bulat atau bersudut-sudut. Jaringan padat elastis dapat juga berbentuk sebagai lembaran misalnya fascia scarpae pada dinding perut atau sebagai membrana fenestra pada dinding aorta.

c. Jaringan Retikuler

Sebagian besar jaringan ini tersusun oleh serabut retikuler. Biasanya terdapat sel retikuler primitif atau sel makrofag. Serabut bersama sel-selnya membentuk kerangka atau stroma dalam jaringan limfoid dan jaringan mieloid (sumsum tulang).

d. Jaringan Pengikat Pigmen

Termasuk jaringan pengikat khusus yang tidak banyak terdapat dalam tubuh, di antaranya terdapat sebagai Tunica suprachoroidea dan Lamina fusca pada sclera bola mata.

e. Jaringan Lemak

Fungsinya sebagai pelindung terhadap gangguan suhu dan mekanik, serta mempunyai arti penting dalam metabolisme.

1. jaringan lemak putih

Merupakan jaringan lemak yang biasa terdapat. Biasanya berbentuk bulat dan tersusun sangat rapat. Jaringan lemak jenis ini banyak terdapat sebagai jaringan di bawah kulit. Kelompok sel-sel lemak tersebut biasanya membentuk lobulus yang dipisahkan oleh jaringan pengikat padat. Sel-sel lemak yang menyusun biasanya mempunyai sebuah rongga yang besar yang diisi oleh lemak sehingga disebut sel lemak unilokuler, inti sel terdesak ke tepi.

2. jaringan lemak cokelat

Warna jaringan lemak ini mulai cokelat sampai kemerah-merahan. Warna cokelat disebabkan oleh kepadatan sitokhrom dan juga karena banyak mengandung pembuluh darah. Jaringannya tersusun oleh sel-sel lemak yang lebih kecil ukurannya dari sel lemak pada jaringan lemak putih. Sel lemak berbentuk poligonal. Sitoplasmanya lebih jelas terlihat dengan sejumlah tetes-tetes lemak yang menempati dalam rongga yang jumlahnya lebih dari sebuah sehingga disebut sel lemak multilokuler, inti yang bulat terletak eksentrik.
Kalau jaringan lemak putih atau kuning dapat berasal dari jaringan pengikat longgar yang tersebar di seluruh tubuh sepanjang hidupnya, maka jaringan lemak cokelat terbatas pada tempat-tempat tertentu dan terbentuk pada waktu embrio saja. Sehingga jaringan lemak cokelat tidak akan bertambah setelah lahir.

Bahan Kuliah Mahasiswa FKG-UNPAD
Sumber : Prof. Subowo dr., Msc., PhD

3. KARTILAGO

Sel kartilago terdiri dari kondrosit dan kondroblasl. Serat dan substansi dasar membentuk substansi interselular atau matriks. Matriks merupakan suatu wujud kaku bahkan keras, yang substansi dasarnya terdiri atas proteoglikans yang mengandung kondroitin sulfat untuk kartilago.
Kartilago dicirikan oleh suatu matriks ekstraseluler yang kaya akan glikosaminoglikan dan proteoglikan. Merupakan jaringan ikat khusus dimana matriks ekstraselnya berkonsistensi padat, sehingga kartilago ini memiliki daya kenyal yang memungkinkan jaringan ini menahan stres mekanik tanpa mengalami distorsi. Fungsi kartilago yang lain ialah menunjang jaringan lunak. Karena permukaannya licin dan berdaya kenyal, maka kartilago merupakan daerah peredam guncangan dan permukaan gesekan bagi sendi.
Kolagen,asam hialuronat, proteoglikan dan sejumlah kecil glikoprotein tertentu merupakan makromolekul utama dalam semua jenis matriks kartilago. Kartilago tidak mempunyai pembuluh darah dan mendapatkan makanannya melalui difusi dari kapiler dalam jaringan ikat yang berdekatan (perikondrium) atau melalui cairan sinovial. Pada keadaan tertentu, pembuluh darah menerobos kartilago untuk mengangkut makanan bagi jaringan lain, namun pembuluh ini tidak memasok makanan bagi kartilago.

Kartilago terdiri atas :

1. kondroblas.
2. kondrosit.
3. substansi interseluler.
4. perikondrium.

Kondroblas : fibroblas, keduanya adalah ‘sel bakal’ yang berbentuk oval terletak di pinggir dari kartilago. Kondroblas adalah bakal sel kartilago.

Kondrosit mempunyai inti yang khas berbentuk bundar dengan sebuah nucleus atau dua buah nucleoli. Kondrosit terletak di dalam lacuna ( celah ) berbentuk bulat. Ia disebut juga sel kartilago ( yang kalau berkelompok disebut sel isogen ). Letak chondrocyt di dalam jaringan tulang rawan lebih ke dalam daripada letak chondroblast.

Substansi interseluler terdiri dari komponen fibriler dan substansi dasar, matriks amorf “gel”.

Perikondrium merupakan jaringan pengikat yang membungkus kartilago, terdiri dari sel fibrosit yang gepeng dan diantaranya terdapat serat kolagen.

Kalsifikasi berdasarkan jumlah matriks amorf dan jumlah serabut kolagen terbagi menjadi 3:

1. Kartilago hyalin
2. Kartilago elastis
3. Kartilago fibrosa

I. KARTILAGO HYALIN

Kartilago hyalin segar berwarna putih kebiruan dan translusen. Pada embrio berfungsi sebagai kerangka sementara hingga secara berangsur-ahgsur hilang diganti dengan tulang. Sedangkan pada mamalia dewasa , kartilago hyalin terdapat di permukaan sendi pada sendi yang dapat bergerak, dinding jalan nafas yang lebih besar (hidung,laring,trakea,bronki), dan ujung ventral iga, tempat berartikulasi dengan sternum, dan pada lempeng epifise.

Matriks
Komponen penting dari matriks kartilago adalah kondronektin,sebuah makromolekul yang membantu perlekatan kondrosit pada kolagen matriks. Matriks kartilago yang tepat ,mengelilingi setiap kondrosit banyak mengandung glikosaminoglikan dan sedikit kolagen.

Perikondrium
Kecuali pada kartilago sendi,semua kartilago hyalin ditutupi oleh selapis jaringan ikat padat,perikondrium, yang esensial bagi pertumbuhan dan pemeliharaan tulang rawan.
Terdiri dari dua lapisan : lapisan fibrosa dan lapisan khondrogenik

Kondrocyt
Pada tepian kartilago hyalin, kondrosit muda berbentuk lonjong, dengan sumbu panjang paralel dengan permukaan. Lebih ke dalam bentuknya bulat, dan dapat berkelompok hingga 8 sel, kesemuanya adalah hasil dari pembelahan mitosis dari kondrosit. Kelompok demikian disebut dengan kelompok isogen.

Struktur paling luar dari kartilago Hyalin bagian atas sama dengan dari bawah masing-masing terdapat selaput perikondrium yang kaya fibroblas. Agak ke tengah terdapat kondroblas atau sel kartilago muda dalam kapsula kecil dengan sitoplasma penuh. Makin ke tengah terdapat kondrosit atau sel rawan dewasa dalam berkelompok seperti bagian paling tengah, kondrosit tampak membentuk kelompok dua-dua empat-empat, dan disebut kelompok isogen. Tiap kelompok isogen dikelilingi matriks teritorial dan menampakkan kondrosit dengan sitoplasma tereduksi, sehingga tampak ruang antara sitoplasma dengan kapsula yang disebut lakuna. Antara dua kelompok isogen dipisahkan oleh matriks interteritorial.

II. KARTILAGO ELASTIS

Kartilago elastis terdapat pada aurikula telinga,dinding meatus auditiva eksterna, tuba auditiva (eustachii), epiglotis dan sebagian kerangka larynx. Kartilago elastis segar berwarna kekuningan disebabkan oleh adanya elastin dalam serat-serat elastin. Strukturnya sama dengan kartilago hyalin.

III. KARTILAGO FIBROSA

Merupakan peralihan dari kartilago hyalin ke jaringan pengikat. Ditemukan pada diskus invertebrate, kartilago artikularis, symfisis osseum pubis. Struktur kartilago fibrosa terdiri dari serabut kolagen menutupi matriks ( sebagai anyaman padat ).

Histogenesis Kartilago Hyaline :

A. Mesenkim, jaringan precursor semua jenis tulang rawan.
B. Proliferasi mitosis dari sel-sel mesenkim menghasilkan jaringan yang sangat aseluler.
C. Khondroblast saling berjauhan oleh pembentukan banyak matriks.
D. Multiplikasi sel-sel kartilago mengasilkan kelompok isogen, masing-masing dikelilingi oleh pemadatan matriks territorial ( kapsula ).

Kartilago terbentuk sel mesenkim. Modifikasi pertama yang tampak ialah membulatnya sel-sel mesenkim, yang menarik kembali juluran-julurannya, membelah dengan cepat, dan mengelompok. Sel-sel yang dibentuk melalui diferensiasi langsung dari sel mesenkim ini disebut Kondroblas. Sintesis dan pelepasan matriks mulai memisahkan kondroblas satu terhadap lainnya. Kejadian diferensiasi kartilago berlangsung dari pusat ke luar, karena nya sel-sel yang lebih di pusat memiliki ciri kondrosit sedangkan sel-sel perifer memiliki ciri kondroblas. Mesenkim superficial bekembang menjadi kondroblas dan fibroblas dari perikondrium.

Pertumbuhan

Pertumbuhan kartilago dapat terjadi melalui 2 proses :
- Pertumbuhan interstisial, akibat pembelahan mitosis dari khondrosit-kondrosit yang ada.
- dan pertumbuhan aposisil, akibat diferensiasi sel-sel perikondrium.

Pertumbuhan sebenarnya jadi jauh lebih besar daripada sekedar penambahan jumlah sel. Pertumbuhan interstisial penting untuk menambah panjang tulang panjang dan menyediakan model kartilago untuk penulangan endokondral.
Pada tulang rawan sendi, saat sel-sel dan matriks dekat permukaan sendi secara berangsur menjadi aus, maka tulang rawan ini harus diganti baru dari dalam, karena tidak ada perikondrium untuk menambah sel-sel baru secara aposisi. Pada kartilago yang ditemukan di tempat lain dari tubuh, pertumbuhan interstisial tidak begitu penting karena matriksnya telah menjadi sangat kaku akibat adanya ikatan silang dari unsur matriks. Tulang rawan kemudian hanya dapat tumbuh melebar melalui aposisi.

Bahan Kuliah Mahasiswa FKG-UNPAD
Sumber : Prof. Subowo dr., Msc., PhD

4. TULANG



Tulang adalah jaringan yang tersusun oleh sel dan didominasi oleh matrix kolagen ekstraselular (type I collagen) yang disebut sebagai osteoid. Osteoid ini termineralisasi oleh deposit kalsium hydroxyapatite, sehingga tulang menjadi kaku dan kuat.

Sel-sel pada tulang adalah :

Osteoblast : yang mensintesis dan menjadi perantara mineralisasi osteoid. Osteoblast ditemukan dalam satu lapisan pada permukaan jaringan tulang sebagai sel berbentuk kuboid atau silindris pendek yang saling berhubungan melalui tonjolan-tonjolan pendek.

Osteosit : merupakan komponen sel utama dalam jaringan tulang. Mempunyai peranan penting dalam pembentukan matriks tulang dengan cara membantu pemberian nutrisi pada tulang.

Osteoklas : sel fagosit yang mempunyai kemampuan mengikis tulang dan merupakan bagian yang penting. Mampu memperbaiki tulang bersama osteoblast. Osteoklas ini berasal dari deretan sel monosit makrofag.

Sel osteoprogenitor : merupakan sel mesenchimal primitive yang menghasilkan osteoblast selama pertumbuhan tulang dan osteosit pada permukaan dalam jaringan tulang.
Tulang membentuk formasi endoskeleton yang kaku dan kuat dimana otot-otot skeletal menempel sehingga memungkinkan terjadinya pergerakan. Tulang juga berperan dalam penyimpanan dan homeostasis kalsium. Kebanyakan tulang memiliki lapisan luar tulang kompak yang kaku dan padat.
Tulang dan kartilago merupakan jaringan penyokong sebagai bagian dari jaringan pengikat tetapi keduanya memiliki perbedaan pokok antara lain :
Tulang memiliki system kanalikuler yang menembus seluruh substansi tulang.
Tulang memiliki jaringan pembuluh darah untuk nutrisi sel-sel tulang.
Tulang hanya dapat tumbuh secara aposisi.
Substansi interseluler tulang selalu mengalami pengapuran.

STRUKTUR MAKROSKOPIK

Pada potongan tulang terdapat 2 macam struktur :
Substantia spongiosa (berongga)
Substantia compacta (padat)
Bagian diaphysis tulang panjang yang berbentuk sebagai pipa dindingnya merupakan tulang padat, sedang ujung-ujungnya sebagian besar merupakan tulang berongga yang dilapisi oleh tulang padat yang tipis. Ruangan dari tulang berongga saling berhubungan dan juga dengan rongga sumsum tulang.

JENIS JARINGAN TULANG

Secara histologis tulang dibedakan menjadi 2 komponen utama, yaitu :

Tulang muda/tulang primer
Tulang dewasa/tulang sekunder

Kedua jenis ini memiliki komponen yang sama, tetapi tulang primer mempunyai serabut-serabut kolagen yang tersusun secara acak, sedang tulang sekunder tersusun secara teratur.

Jaringan Tulang PrimerDalam pembentukan tulang atau juga dalam proses penyembuhan kerusakan tulang, maka tulang yang tumbuh tersebut bersifat muda atau tulang primer yang bersifat sementara karena nantinya akan diganti dengan tulang sekunder
Jaringan tulang ini berupa anyaman, sehingga disebut sebagai woven bone. Merupakan komponen muda yang tersusun dari serat kolagen yang tidak teratur pada osteoid. Woven bone terbentuk pada saat osteoblast membentuk osteoid secara cepat seperti pada pembentukan tulang bayi dan pada dewasa ketika terjadi pembentukan susunan tulang baru akibat keadaan patologis.
Selain tidak teraturnya serabut-serabut kolagen, terdapat ciri lain untuk jaringan tulang primer, yaitu sedikitnya kandungan garam mineral sehingga mudah ditembus oleh sinar-X dan lebih banyak jumlah osteosit kalau dibandingkan dengan jaringan tulang sekunder.
Jaringan tulang primer akhirnya akan mengalami remodeling menjadi tulang sekunder (lamellar bone) yang secara fisik lebih kuat dan resilien. Karena itu pada tulang orang dewasa yang sehat itu hanya terdapat lamella saja.

Jaringan Tulang Sekunder
Jenis ini biasa terdapat pada kerangka orang dewasa. Dikenal juga sebagai lamellar bone karena jaringan tulang sekunder terdiri dari ikatan paralel kolagen yang tersusun dalam lembaran-lembaran lamella. Ciri khasnya : serabut-serabut kolagen yang tersusun dalam lamellae(lapisan) setebal 3-7μm yang sejajar satu sama lain dan melingkari konsentris saluran di tengah yang dinamakan Canalis Haversi. Dalam Canalis Haversi ini berjalan pembuluh darah, serabut saraf dan diisi oleh jaringan pengikat longgar. Keseluruhan struktur konsentris ini dinamai Systema Haversi atau osteon.
Sel-sel tulang yang dinamakan osteosit berada di antara lamellae atau kadang-kadang di dalam lamella. Di dalam setiap lamella, serabut-serabut kolagen berjalan sejajar secara spiral meliliti sumbu osteon, tetapi serabut-serabut kolagen yang berada dalam lamellae di dekatnya arahnya menyilang.
Di antara masing-masing osteon seringkali terdapat substansi amorf yang merupakan bahan perekat.
Susunan lamellae dalam diaphysis mempunyai pola sebagai berikut :
Tersusun konsentris membentuk osteon.
Lamellae yang tidak tersusun konsentris membentuk systema interstitialis.
Lamellae yang malingkari pada permukaan luar membentuk lamellae circumferentialis externa.
Lamellae yang melingkari pada permukaan dalam membentuk lamellae circumferentialis interna.


PERIOSTEUM

Bagian luar dari jaringan tulang yang diselubungi oleh jaringan pengikat pada fibrosa yang mengandung sedikit sel. Pembuluh darah yang terdapat di bagian periosteum luar akan bercabang-cabang dan menembus ke bagian dalam periosteum yang selanjutnya samapai ke dalam Canalis Volkmanni. Bagian dalam periosteum ini disebut pula lapisan osteogenik karena memiliki potensi membentuk tulang. Oleh karena itu lapisan osteogenik sangat penting dalam proses penyembuhan tulang.


Periosteum dapat melekat pada jaringan tulang karena :


pembuluh-pembuluh darah yang masuk ke dalam tulang.
terdapat serabut Sharpey ( serat kolagen ) yang masuk ke dalam tulang.
terdapat serabut elastis yang tidak sebanyak serabut Sharpey.

ENDOSTEUM
Endosteum merupakan lapisan sel-sel berbentuk gepeng yang membatasi rongga sumsum tulang dan melanjutkan diri ke seluruh rongga-rongga dalam jaringan tulang termasuk Canalis Haversi dan Canalis Volkmanni. Sebenarnya endosteum berasal dari jaringan sumsum tulang yang berubah potensinya menjadi osteogenik.

KOMPONEN JARINGAN TULANG
Sepertinya halnya jaringan pengikat pada umumnya, jaringan tulang juga terdiri atas unsur-unsur : sel, substansi dasar, dan komponen fibriler. Dalam jaringan tulang yang sedang tumbuh, seperti telah dijelaskan pada awal pembahasan, dibedakan atas 4 macam sel :

Osteoblas
Sel ini bertanggung jawab atas pembentukan matriks tulang, oleh karena itu banyak ditemukan pada tulang yang sedang tumbuh. Selnya berbentuk kuboid atau silindris pendek, dengan inti terdapat pada bagian puncak sel dengan kompleks Golgi di bagian basal. Sitoplasma tampak basofil karena banyak mengandung ribonukleoprotein yang menandakan aktif mensintesis protein.
Pada pengamatan dengan M.E tampak jelas bahwa sel-sel tersebut memang aktif mensintesis protein, karena banyak terlihat RE dalam sitoplasmanya. Selain itu terlihat pula adanya lisosom.

Osteosit
Merupakan komponen sel utama dalam jaringan tulang. Pada sediaan gosok terlihat bahwa bentuk osteosit yang gepeng mempunyai tonjolan-tonjolan yang bercabang-cabang. Bentuk ini dapat diduga dari bentuk lacuna yang ditempati oleh osteosit bersama tonjolan-tonjolannya dalam canaliculi. Dari pengamatan dengan M.E dapat diungkapkan bahwa kompleks Golgi tidak jelas, walaupun masih terlihat adanya aktivitas sintesis protein dalam sitoplasmanya. Ujung-ujung tonjolan dari osteosit yang berdekatan saling berhubungan melalui gap junction. Hal-hal ini menunjukkan bahwa kemungkinan adanya pertukaran ion-ion di antara osteosit yang berdekatan.
Osteosit yang terlepas dari lacunanya akan mempunyai kemampuan menjadi sel osteoprogenitor yang pada gilirannya tentu saja dapat berubah menjadi osteosit lagi atau osteoklas.

Osteoklas

Merupakan sel multinukleat raksasa dengan ukuran berkisar antara 20 μm-100μm dengan inti sampai mencapai 50 buah. Sel ini ditemukan untuk pertama kali oleh Köllicker dalam tahun 1873 yang telah menduga bahwa terdapat hubungan sel osteoklas (O) dengan resorpsi tulang. Hal tersebut misalnya dihubungkan dengan keberadaan sel-sel osteoklas dalam suatu lekukan jaringan tulang yang dinamakan Lacuna Howship (H). keberadaan osteoklas ini secara khas terlihat dengan adanya microvilli halus yang membentuk batas yang berkerut-kerut (ruffled border). Gambaran ini dapat dilihat dengan mroskop electron. Ruffled border ini dapat mensekresikan beberapa asam organik yang dapat melarutkan komponen mineral pada enzim proteolitik lisosom untuk kemudian bertugas menghancurkan matriks organic. Pada proses persiapan dekalsifikasi (a), osteoklas cenderung menyusut dan memisahkan diri dari permukaan tulang. Relasi yang baik dari osteoklas dan tulang terlihat pada gambar (b). resorpsi osteoklatik berperan pada proses remodeling tulang sebagai respon dari pertumbuhan atau perubahan tekanan mekanikal pada tulang. Osteoklas juga berpartisipasi pada pemeliharaan homeostasis darah jangka panjang.

Selain pendapat di atas, ada sebagian peneliti berpendapat bahwa keberadaan osteoklas merupakan akibat dari penghancuran tulang. Adanya penghancuran tulang osteosit yang terlepas akan bergabung menjadi osteoklas. Tetapi akhir-akhir ini pendapat tersebut sudah banyak ditinggalkan dan beralih pada pendapat bahwa sel-sel osteoklas-lah yang menyebabkan terjadinya penghancuran jaringan tulang.

Sel Osteoprogenitor
Sel tulang jenis ini bersifat osteogenik, oleh karena itu dinamakan pula sel osteogenik. Sel-sel tersebut berada pada permukaan jaringan tulang pada periosteum bagian dalam dan juga endosteum. Selama pertumbuhan tulang, sel-sel ini akan membelah diri dan mnghasilkan sel osteoblas yang kemudian akan akan membentuk tulang. Sebaliknya pada permukaan dalam dari jaringan tulang tempat terjadinya pengikisan jaringan tulang, sel-sel osteogenik menghasilkan osteoklas.
Sel – sel osteogenik selain dapat memberikan osteoblas juga berdiferensiasi menjadi khondroblas yang selanjutnya menjadi sel cartilago. Kejadian ini, misalnya, dapat diamati pada proses penyembuhan patah tulang. Menurut penelitian, diferensiasi ini dipengaruhi oleh lingkungannya, apabila terdapat pembuluh darah maka akan berdiferensiasi menjadi osteoblas, dan apabila tidak ada pembuluh darah akan menjadi khondroblas. Selain itu, terdapat pula penelitian yang menyatakan bahwa sel osteoprogenitor dapat berdiferensiasi menjadi sel osteoklas lebih – lebih pada permukaan dalam dari jaringan tulang.

MATRIKS TULANG
Berdasarkan beratnya, matriks tulang yang merupakan substansi interseluler terdiri dari ± 70% garam anorganik dan 30% matriks organic.
95% komponen organic dibentuk dari kolagen, sisanya terdiri dari substansi dasar proteoglycan dan molekul-molekul non kolagen yang tampaknya terlibat dalam pengaturan mineralisasi tulang. Kolagen yang dimiliki oleh tulang adalah kurang lebih setengah dari total kolagen tubuh, strukturnya pun sama dengan kolagen pada jaringan pengikat lainnya. Hampir seluruhnya adalah fiber tipe I. Ruang pada struktur tiga dimensinya yang disebut sebagai hole zones, merupakan tempat bagi deposit mineral.
Kontribusi substansi dasar proteoglycan pada tulang memiliki proporsi yang jauh lebih kecil dibandingkan pada kartilago, terutama terdiri atas chondroitin sulphate dan asam hyaluronic. Substansi dasar mengontrol kandungan air dalam tulang, dan kemungkinan terlibat dalam pengaturan pembentukan fiber kolagen.
Materi organik non kolagen terdiri dari osteocalcin (Osla protein) yang terlibat dalam pengikatan kalsium selama proses mineralisasi, osteonectin yang berfungsi sebagai jembatan antara kolagen dan komponen mineral, sialoprotein (kaya akan asam salisilat) dan beberapa protein.
Matriks anorganik merupakan bahan mineral yang sebagian besar terdiri dari kalsium dan fosfat dalam bentuk kristal-kristal hydroxyapatite. Kristal –kristal tersebut tersusun sepanjang serabut kolagen. Bahan mineral lain : ion sitrat, karbonat, magnesium, natrium, dan potassium.
Kekerasan tulang tergantung dari kadar bahan anorganik dalam matriks, sedangkan dalam kekuatannya tergantung dari bahan-bahan organik khususnya serabut kolagen.


MEKANISME KALSIFIKASI DAN RESORPSI TULANG

Proses kalsifikasi tulang yang kompleks belum diketahui secara pasti, namun disini akan dibahas garis besarnya.
Kalsifikasi dalam tulang tidak terlepas dari proses metabolisme kalsium dan fosfat. Bahan-bahan mineral yang akan diendapkan semula berada dalam aliran darah. Osteoblas berperan dalam mensekresikan enzim alkali fosfatase. Dalam keadaan biasa, darah dan cairan jaringan mengandung cukup ion fosfat dan kalsium untuk pengendapan kalsium Ca3(PO4)2 apabila terjadi penambahan ion fosfat dan kalsium. Penambahan ion-ion tersebut diperoleh dari pengaruh enzim alkali fosfatase dari osteoblas. Hal tersebut juga dapat diperoleh dari pengaruh hormone parathyreoid dan pemberian vitamin D atau pengaruh makanan yang mengandung garam kalsium tinggi.
Faktor lain yang harus diperhitungkan yaitu keadaan pH karena kondisi yang agak asam lebih menjurus ke pembentukan garam CaHPO4 daripada Ca3(PO4)2. Karena CaHPO4 lebih mudah larut, maka untuk mengendapkannya dibutuhkan kadar fosfat dan kalsium yang lebih tinggi daripada dalam kondisi alkali untuk mengendapkan Ca3(PO4)2 yang kurang dapat larut.
Kenaikan kadar ion kalsium dan fosfat setempat sekitar osteoblast dan khondrosit hipertrofi disebabkan sekresi alkali fosfatase yang akan melepaskan fosfat dari senyawa organik yang ada di sekitarnya.
Serabut kolagen yang ada di sekitar osteoblast akan merupakan inti pengendapan, sehingga kristal-kristal kalsium akan tersusun sepanjang serabut.
Resorpsi tulang sama pentingnya dengan proses kalsifikasinya, karena tulang akan dapat tumbuh membesar dengan cara menambah jaringan tulang baru dari permukaan luarnya yang dibarengi dengan pengikisan tulang dari permukaan dalamnya.
Resorpsi tulang yang sangat erat hubungannya dengan sel-sel osteoklas, mencakup pembersihan garam mineral dan matriks organic yang kebanyakan merupakan kolagen. Dalam kaitannya dengan resorpsi tersebut terdapat 3 kemungkinan :
osteoklas bertindak primer dengan cara melepaskan mineral yang disusul dengan depolimerisasi molekul-molekul organic,
osteoklas menyebabkan depolimerisasi mukopolisakarida dan glikoprotein sehingga garam mineral yang melekat menjadi bebas,
sel osteoklas berpengaruh kepada serabut kolagen
Rupanya, cara yang paling mudah untuk osteoklas dalam membersihkan garam mineral yaitu dengan menyediakan suasana setempat yang cukup asam pada permukaan kasarnya. Bagaimana cara osteoklas membuat suasana asam belum dapat dijelaskan. Perlu pula dipertimbangkan adanya lisosom dalam sitoplasma osteoklas yang pernah dibuktikan.

PERTUMBUHAN TULANG

Perkembangan tulang pada embrio terjadi melalui dua cara, yaitu osteogenesis desmalis dan osteogenesis enchondralis. Keduanya menyebabkan jaringan pendukung kolagen primitive diganti oleh tulang, atau jaringan kartilago yang selanjutnya akan diganti pula menjadi jaringan tulang. Hasil kedua proses osteogenesis tersebut adalah anyaman tulang yang selanjutnya akan mengalami remodeling oleh proses resorpsi dan aposisi untuk membentuk tulang dewasa yang tersusun dari lamella tulang. Kemudian, resorpsi dan deposisi tulang terjadi pada rasio yang jauh lebih kecil untuk mengakomodasi perubahan yang terjadi karena fungsi dan untuk mempengaruhi homeostasis kalsium. Perkembangan tulang ini diatur oleh hormone pertumbuhan, hormone tyroid, dan hormone sex.


Osteogenesis Desmalis
Nama lain dari penulangan ini yaitu Osteogenesis intramembranosa, karena terjadinya dalam membrane jaringan. Tulang yang terbentuk selanjutnya dinamakan tulang desmal. Yang mengalami penulangan desmal ini yaitu tulang atap tengkorak.
Mula-mula jaringan mesenkhim mengalami kondensasi menjadi lembaran jaringan pengikat yang banyak mengandung pembuluh darah. Sel-sel mesenkhimal saling berhubungan melalui tonjolan-tonjolannya. Dalam substansi interselulernya terbentuk serabut-serabut kolagen halus yang terpendam dalam substansi dasar yang sangat padat.
Tanda-tanda pertama yang dapat dilihat adanya pembentukan tulang yaitu matriks yang terwarna eosinofil di antara 2 pembuluh darah yang berdekatan. Oleh karena di daerah yang akan menjadi atap tengkorak tersebut terdapat anyaman pembuluh darah, maka matriks yang terbentuk pun akan berupa anyaman. Tempat perubahan awal tersebut dinamakan Pusat penulangan primer.
Pada proses awal ini, sel-sel mesenkhim berdiferensiasi menjadi osteoblas yang memulai sintesis dan sekresi osteoid. Osteoid kemudian bertambah sehingga berbentuk lempeng-lempeng atau trabekulae yang tebal. Sementara itu berlangsung pula sekresi molekul-molekul tropokolagen yang akan membentuk kolagen dan sekresi glikoprotein.
Sesudah berlangsungnya sekresi oleh osteoblas tersebut disusul oleh proses pengendapan garam kalsium fosfat pada sebagian dari matriksnya sehingga bersisa sebagai selapis tipis matriks osteoid sekeliling osteoblas.
Dengan menebalnya trabekula, beberapa osteoblas akan terbenam dalam matriks yang mengapur sehingga sel tersebut dinamakan osteosit. Antara sel-sel tersebut masih terdapat hubungan melalui tonjolannya yang sekarang terperangkap dalam kanalikuli. Osteoblas yang telah berubah menjadi osteosit akan diganti kedudukannya oleh sel-sel jaringan pengikat di sekitarnya. Dengan berlanjutnya perubahan osteoblas menjadi osteosit maka trabekulae makin menebal, sehingga jaringan pengikat yang memisahkan makin menipis. Pada bagian yang nantinya akan menjadi tulang padat, rongga yang memisahkan trabekulae sangat sempit, sebaliknya pada bagian yang nantinya akan menjadi tulang berongga, jaingan pengikat yang masih ada akan berubah menjadi sumsum tulang yang akan menghasilkan sel-sel darah. Sementara itu, sel-sel osteoprogenitor pada permukaan Pusat penulangan mengalami mitosis untuk memproduksi osteoblas lebih lanjut

Osteogenesis Enchondralis
Awal dari penulangan enkhondralis ditandai oleh pembesaran khondrosit di tengah-tengah diaphysis yang dinamakan sebagai pusat penulangan primer. Sel – sel khondrosit di daerah pusat penulangan primer mengalami hypertrophy, sehingga matriks kartilago akan terdesak mejadi sekat – sekat tipis. Dalam sitoplasma khondrosit terdapat penimbunan glikogen. Pada saat ini matriks kartilago siap menerima pengendapan garam – garam kalsium yang pada gilirannya akan membawa kemunduran sel – sel kartilago yang terperangkap karena terganggu nutrisinya. Kemunduran sel – sel tersebut akan berakhir dengan kematian., sehingga rongga – rongga yang saling berhubungan sebagai sisa – sisa lacuna. Proses kerusakan ini akan mengurangi kekuatan kerangka kalau tidak diperkuat oleh pembentukan tulang disekelilingnya. Pada saat yang bersamaan, perikhondrium di sekeliling pusat penulangan memiliki potensi osteogenik sehingga di bawahnya terbentuk tulang. Pada hakekatnya pembentukan tulang ini melalui penulangan desmal karena jaringan pengikat berubah menjadi tulang. Tulang yang terbentuk merupakan pipa yang mengelilingi pusat penulangan yang masih berongga – rongga sehingga bertindeak sebagai penopang agar model bentuk kerangka tidak terganggu. Lapisan tipis tulang tersebut dinamakan pipa periosteal.
Setelah terbentuknya pipa periosteal, masuklah pembuluh – pembuluh darah dari perikhondrium,yang sekarang dapat dinamakan periosteum, yang selanjutnya menembus masuk kedalam pusat penulangan primer yang tinggal matriks kartilago yang mengalami klasifikasi. Darah membawa sel – sel yang diletakan pada dinding matriks. Sel – sel tersebut memiliki potensi hemopoetik dan osteogenik. Sel – sel yang diletakan pada matriks kartilago akan bertindak sebagai osteoblast. Osteoblas ini akan mensekresikan matriks osteoid dan melapiskan pada matriks kartilago yang mengapur. Selanjutnya trabekula yang terbentuk oleh matriks kartilago yang mengapur dan dilapisi matriks osteoid akan mengalami pengapuran pula sehingga akhirnya jaringan osteoid berubah menjadi jaringan tulang yang masih mengandung matriks kartilago yang mengapur di bagian tengahnya. Pusat penulangan primer yang terjadi dalam diaphysis akan disusun oleh pusat penulangan sekunder yang berlangsung di ujung – ujung model kerangka kartilago.


PERTUMBUHAN MEMANJANG TULANG PIPA

Setelah berlangsung penulangan pada pusat penulangan sekunder di daerah epiphysis, maka teradapatlah sisa – sisa sel khondrosit diantara epiphysis dan diaphysis. Sel – sel tersebut tersusun bederet –deret memanjang sejajar sumbu panjang tulang. Masing – masing deretan sel kartilago dipisahkan oleh matriks tebal kartilago, sedangkan sel –sel kartilago dalam masing – masing deretan dipisahkan oleh matriks tipis. Jaringan kartilago yang memisahkan epiphysis dan diaphysis berbentuk lempeng atau cakram sehingga dinamakan Discus epiphysealis.
Sel –sel dalam masing – masing deretan tidak sama penampilannya. Hal ini disebabkan karena ke arah diaphysis sel – sel kartilago berkembang yang sesuai dengan perubahan – perubahan yang terjadi pada pusat penulangan. Karena perubahan sel –sel dalam setiap deret seirama, maka discus tersebut menunjukan gambaran yang dibedakan dalam daerah – daerah perkembangan.

Daerah – daerah perkembangan :

1. Zona Proliferasi : sel kartilago membelah diri menjadi deretan sel – sel gepeng.
2. Zona Maturasi : sel kartilago tidak lagi membelah diri,tapi bertambah besar.
3. Zona hypertrophy : sel –sel membesar dan bervakuola.
4. Zona kalsifikasi : matriks cartílago mengalami kalsifikasi.
5. Zona degenerasi : sel – sel cartílago berdegenerasi diikuti oleh terbukanya lacuna sehingga terbentuk trabekula.

Karena masuknya pembuluh darah, maka pada permukaan trabekula di daerah ke arah diaphysis diletakan sel –sel yang akan berubah menjadi osteoblas yang selanjutnya akan melanjutkan penulangan.
Dalam proses pertumbuhan discus epiphysealis akan semakin menipis, sehingga akhirnya pada orang yang telah berhenti pertumbuhan memanjangnya sudah tidak deketemukan lagi.







PEMBESARAN DIAMETER TULANG PIPA
Pertumbuhan tulang pipa selain memanjang melalui discus epiphysealis juga mengalami pertambahan diameter dengan cara pertambahan jeringan tulang melalui penulangan oleh periosteum lapisan dalam yang dibarengi dengan pengikisan jaringan tulang dari permukaan dalamnya.
Dengan adanya proses pengikisan jaringan tulang ini, walau pun diameter tulang bertambah namun ketebalannya tetap dipertahankan. Hal ini penting,karena tanpa pengikisan,berat tulang akan bertambah terus sehingga mengganggu fungsinya.

PERUBAHAN STRUKTUR JARINGAN TULANG
Pada mulanya, dari perkembangan trabekula tulang terbentuk semacam sistem harvers yang tidak teratur polanya yang dinamakan sistem Havers primitif. Untuk membentuk sistem Havers dengan pola teratur, perlulah sistem Havers primitif mengalami perubahan sehingga terjadilah tulang sekunder. Perubahan dimulai pada beberapa tempat yang terletak tersebar dalam bentuk rongga – rongga yang disebabkan erosi tulang oleh sel-sel osteoklas. Rongga – rongga tersebut meluas sehingga terbentuk silindris yang memanjang, disusul oleh masuknya pembuluh darah bersama jeringan sumsum tulang kedalam rongga – rongga tersebut. Apabila rongga sudah cukup besar, erosi akan berhenti dalm mulailah pembentukn tulang oleh osteoblas yang diletakan oleh darah pada dinding rongga. Pembentukan tulang berlangsung sebagai lembaran – lembaran yang dimulai dari dinding rongga yang makin lama makin mengecilkan rongga sehingga akhirnya pembuluh darah dikelilingi penuh oleh lembaran – lembaran tulang. Dengan demikian terbentuklah sistem harvers dengan pembuluh darah di tengahnya. Pada perbatasan luar setiap sistem harvers terdapat substansi perekat yang merupakan sisa matriks tulang.
Pembentukan sistem Havers tidak berhenti estela proses di atas, namun akan terjadi pula erosi lagi yang diikuti pembentukan sistem harvers baru seperti semula. Proses tersebut terjadi berulang-ulang sehingga pada potongan melintang tulang pipa akan dapat dibedakan beberapa struktur :

1. Sistem Havers yang lama
2. Sistem Havers yang sedang dibentuk
3. Ruang-ruang karena erosi
4. Sisa – sisa sistem harvers sebagai lamela intersitiil.

PERBAIKAN PATAH TULANG
Jika terjadi patah tulang, maka kerusakan akan menyebabkan perdarahan yang biasanya akan diikuti oleh pembekuan. Kerusakan juga menyebabkan kerusakan matriks dan sel – sel tulang di dekatgaris patah.
Awal dari proses perbaikan tulang dimulai dengan pembersihan dari bekuan darah, sisa – sisa sel dan matriks yang rusak. Periosteum dan endosteum disekitar tulang yang patah menanggapi dengan meningkatnya proliferasi fibroblast sehingga terbentuklah jaringan seluler disekitar garis patah dan di antara ujung – ujung tulang yang terpisah.
Pembentukan tulang baru berlangsung melalui penulangan enkhondral dan desmal secara simultan. Untuk penulangan enkhondral didahului dengan terbentuknya kartilago hialin yang berasal dari perubahan jaringan granulasi sebagai hasil proliferasi fibroblast. Celah fragmen tulang sekarang diisi oleh jaringan kartilago yang merupakan kalus. Jaringan tulang baru mengisi celah diantara fragmen tulang membentuk kalus tulang dan menggantikan kalus kartilago. Sel – sel osteoprogenitor dari periosteum dan endosteum akan menjadi osteoblas sehingga di daerah tersebut terjadi penulangan desmal. Penulangan enkhondral berlangsung sebagai trabekula dalam jaringan kartilago yang merupakan jaringan penopang sementara dalam perbaikan patah tulang. Tekanan pada tulang selama proses penyembuhan menyebabkan perbaikan bentuk tulang ke bentuk asalnya sehingga benjolan kalus akhirnya akan lenyap melalui resorpsi.

PERSENDIAN DAN MEMBRANA SYNOVIALIS
Tulang – tulang dihubungkan satu ama lain melalui persendian. Berdasarkan strukturnya terdapat berbagai bentuk sendi yang juga menentukan keluasan gerakan bagian – bagian tulang yang terlibat.
Berdasarkan keluasan gerakannya dibedakan :

1. Synathrosis : gerakan terbatas.
2. Diathrosis : gerakan luas.

Karena luasnya gerakan dari diarthrosis maka diantara ujung – ujung tulang berdekatan terdapat rongga yang dinamakan Cavum artikularis. Rongga ini berdinding jaringan ikat padat.
Kapsel pada sendi tersebut terdiri atas dua lapisan, yaitu :

1. Lapisan fibrosa (di sebelah luar)
2. Lapisan sinovial (disebelah dalam)

Cairan yang berada di dalam cavum synoviale dihasilkan oleh sel – sel sinovial. Permukaan dalam dari lapisan sinovial biasanya dibatasi oleh sel – sel berbentuk gepeng atau kuboid. Di bawah lapisan ini terdapat jaringan pengikat longgar atau padat dan jaringan lemak. Sel –sel membran sinovial berasal dari jaringan mesenkhim yang dipisahkan oleh substansi dasar.

Bahan Kuliah Mahasiswa FKG-UNPAD
Sumber : Prof. Subowo dr., Msc., PhD

5. DARAH

Darah merupakan suatu suspensi sel dan fragmen sitoplasma di dalam cairan yang disebut Plasma. Secara keseluruhan darah dapat dianggap sebagai jaringan pengikat dalam arti luas, karena pada dasarnya terdiri atas unsur-unsur sel dan substansi interseluler yang berbentuk plasma. Fungsi utama dari darah adalah mengangkut oksigen yang diperlukan oleh sel-sel di seluruh tubuh. Darah juga menyuplai jaringan tubuh dengan nutrisi, mengangkut zat-zat sisa metabolisme, dan mengandung berbagai bahan penyusun sistem imun yang bertujuan mempertahankan tubuh dari berbagai penyakit.

Darah manusia berwarna merah, antara merah terang apabila kaya oksigen sampai merah tua apabila kekurangan oksigen. Warna merah pada darah disebabkan oleh hemoglobin, protein pernapasan (respiratory protein), yang terdapat dalam eritrosit dan mengandung besi dalam bentuk heme, yang merupakan tempat terikatnya molekul-molekul oksigen. Darah juga mengangkut bahan bahan sisa metabolisme, obat-obatan dan bahan kimia asing ke hati untuk diuraikan dan ke ginjal untuk dibuang sebagai air seni.

Pada manusia umumnya memiliki volume darah sebanyak kurang lebih 5 liter dengan unsur-unsur pembentuknya yaitu sel-sel darah, platelet, dan plasma. Sel darah terdiri dari eritrosit dan leukosit, platelet yang merupakan trombosit atau keping darah, sedangkan plasma darah pada dasarnya adalah larutan air yang mengandung :
Air (90%)

Zat terlarut (10%) yang terdiri dari :
- Protein plasma (albumin, globulin, fibrinogen) 7%
- Senyawa Organik (As. Amino, glukosa, vitamin, lemak) 2.1%
- Garam organik (sodium, pottasium, calcium) 0.9%

Untuk dapat melihat perbedaan dari sel darah dengan plasma dapat dilakukan dengan cara sentrifugasi tabung hematokrit berisi darah yang telah diberi bahan anti pembekuan.
Eritrosit
Leukosit
Plasma

Dapat dilihat untuk bagian yang berwarna merah merupakan eritrosit, selapis tipis warna putih merupakan kumpulan sel-sel darah putih ( leukosit) can cairan kuning merupakan plasma.

JENIS SEL DARAH

1. ERITROSIT

Dalam setiap 1 mm3 darah terdapat sekitar 5 juta eritrosit atau sekitar 99%, oleh karena itu setiap pada sediaan darah yang paling banyak menonjol adalah sel-sel tersebut. Dalam keadaan normal, eritrosit manusia berbentuk bikonkaf dengan diameter sekitar 7 -8 μm, tebal ± 2.6 μm dan tebal tengah ± 0.8 μm dan tanpa memiliki inti.
Komposisi molekuler eritrosit menunjukan bahwa lebih dari separuhnya terdiri dari air (60%) dan sisanya berbentuk substansi padat. Secara keseluruhan isi eritrosit merupakan substansi koloidal yang homogen, sehingga sel ini bersifat elastis dan lunak. Eritrosit mengandung protein yang sangat penting bagi fungsinya yaitu globin yang dikonjugasikan dengan pigmen hem membentuk hemoglobin untuk mengikat oksigen yang akan diedarkan keseluruh bagian tubuh. Seperti halnya sel-sel yang lain, eritrositpun dibatasi oleh membran plasma yang bersifat semipermeable dan berfungsi untuk mencegah agar koloid yang dikandungnya tetap didalam.
Gambar 1. eritrosit
Dari pengamatan eritrosit banyak hal yang harus diperhatikan untuk mengungkapkan berbagai kondisi kesehatan tubuh. Misalnya tentang bentuk, ukuran, warna dan tingkat kedewasaan eritrosit dapat berbeda dari normal. Jika dalam sediaan apus darah terdapat berbagai bentuk yang abnormal dinamakan poikilosit, sedangkan sel-selnya cukup banyak maka keadaan tersebut dinamakan poikilositosis. Eritrosit yang berukuran kurang dari normalnya dinamakan mikrosit dan yang berukuran lebih dari normalnya dinamakan makrosit.

Warna eritrosit tidak merata seluruh bagian, melainkan bagian tengah yang lebih pucat, karena bagian tengah lebih tipis daripada bagian pinggirnya. Pada keadaan normal bagian tengah tidak melebihi 1/3 dari diameternya sehingga selnya dinamakan eritrosit normokhromatik. Apabila bagian tengah yang pucat melebar disertai bagian pinggir yang kurang terwarna maka eritrosit tersebut dinamakan eritrosit hipokromatik. Sebaliknya apabila bagian tengah yang memucat menyempit selnya dimanakan eritrosit hiperkhromatik.


2. LEUKOSIT

Leukosit adalah sel darah yang mengendung inti, disebut juga sel darah putih. Leukosit mempunyai peranan dalam pertahanan seluler dan humoral organisme terhadap zat-zat asingan. Didalam darah manusia, normal didapati jumlah leukosit rata-rata 6000-10000 sel/mm3, bila jumlahnya lebih dari 12000, keadaan ini disebut leukositosis, bilakurang dari 5000 disebut leukopenia.
Sebenarnya leukosit merupakan kelompok sel dari beberapa jenis. Untuk klasifikasinya didasarkan pada morfologi inti adanya struktur khusus dalam sitoplasmanya.
Dilihat dalam mikroskop cahaya maka sel darah putih dapat dibedakan yaitu :


1. Granulosit
Yang mempunyai granula spesifik, yang dalam keadaan hidup berupa tetesan setengah cair, dalam sitoplasmanya dan mempunyai bentuk inti yang bervariasi.
Terdapat tiga jenis leukosit granuler :
- Neutrofil,
- Basofil, dan
- Asidofil (atau eosinofil)
yang dapat dibedakan dengan afinitas granula terhadap zat warna netral, basa dan asam.


2. Agranulosit
Yang tidak mempunyai granula spesifik, sitoplasmanya homogen dengan inti bentuk bulat atau bentuk ginjal. Terdapat dua jenis leukosit agranuler yaitu :

- limfosit (sel kecil, sitoplasma sedikit) dan
- monosit (sel agak besar mengandung sitoplasma lebih banyak).



NETROFIL

Di antara granulosit, netrofil merupakan merupakan jenis sel yang terbanyak yaitu sebanyak 60 – 70% dari jumlah seluruh leukosit atau 3000-6000 per mm3 darah normal.
Pada perkembangan sel netrofil dalam sumsum tulang, terjadi perubahan bentuk intinya, sehingga dalam darah perifer selalu terdapat bentuk-bentuk yang masih dalam perkembangan. Dalam keadaan normal perbandingan tahap-tahap mempunyai harga tertentu sehingga perubahan perbandingan tersebut dapat mencerminkan kelainan. Sel netrofil matang berbentuk bulat dengan diameter 10-12 μm. Intinya berbentuk tidak bulat melainkan berlobus berjumlah 2-5 lobi bahkan dapat lebih. Makin muda jumlah lobi akan berkurang. Yang dimaksudkan dengan lobus yaitu bahan inti yang terpisah-pisah oleh bahan inti berbentuk benang. Inti terisi penuh oleh butir-butir khromatin padat sehingga sangat mengikat zat warna basa menjadi biru atau ungu. Oleh karena padatnya inti, maka sukar untuk untuk memastikan adanya nukleolus.
Dalam netrofil terdapat adanya bangunan pemukul genderang pada inti netrofil yang tidal lain sesuai dengan Barr Bodies yang terdapat pada inti sel wanita. Barr Bodies dalam inti netrofil tidak seperti sel biasa melainkan menyendiri sebagai benjolan kecil. Hal ini dapat digunakan untuk menentukan apakah jenis kelamin seseorang wanita.
Dalam sitoplasma terdapat 2 jenis butir-butir ata granul yang berbeda dalam penampilannya dengan ukuran antara (0.3-0.8μm).

Granul pada neutrofil tersebut yaitu :

- Azurofilik yang mengandung enzym lisozom dan peroksidase, dimana sudah mulai tampak sejak masih dalam sumsum tulang yang makin dewasa makin berkurang jumlahnya. Ukurannya lebih besar dari pada jenis butir yang kedua dan kebanyakan telah kehilangan kemampuan mengikat warna. Dengan pewarnaan Romanovsky butiran ini tampak ungu kemerah-merahan.

- Granul spesifik lebih kecil mengandung fosfatase alkali dan zat-zat bakterisidal
(protein Kationik) yang dinamakan fagositin. Dinamakan butir spesifik karena hanya terdapat pada sel netrofil dengan ukran lebih halus. Butiran ini baru tampak dalam tahap mielosit, berwarna ungu merah muda dan pada sel dewasa akan tampak lebih banyak daripada butir azurofil.

Neutrofil jarang mengandung retikulum endoplasma granuler, sedikit mitokonria,
apparatus Golgi rudimenter dan sedikit granula glikogen. Neutrofil merupakan garis depan pertahanan seluler terhadap invasi jasad renik, menfagosit partikel kecil dengan aktif. Dengan adanya asam amino D oksidase dalam granula azurofilik penting dalam pengenceran dinding sel bakteri yang mengandung asam amino D. Selama proses fagositosis dibentuk peroksidase. Mielo peroksidase yang terdapat dalam neutrofil berikatan dengan peroksida dan halida bekerja pada molekul tirosin dinding sel bakteri dan menghancurkannya.
Dibawah pengaruh zat toksik tertentu seperti streptolisin toksin streptokokus membran granula-granula neutrofil pecah, mengakibatkan proses pembengkakan
diikuti oleh aglutulasi organel - organel dan destruksi neutrofil.
Neotrofil mempunyai metabolisme yang sangat aktif dan mampu melakukan glikolisis baik secara aerob maupun anaerob. Kemampuan nautrofil untuk hidup dalam lingkungan anaerob sangat menguntungkan, karena mereka dapat membunuh bakteri dan membantu membersihkan debris pada jaringan nekrotik

EOSINOFIL


Jmlah sel eosinofil sebesar 1-3% dari seluruh lekosit atau 150-450 buah per mm3 darah. Ukurannya berdiameter 10-15 μm, sedikit lebih besar dari netrofil. Intinya biasanya hanya terdiri atas 2 lobi yang dipisahkan oleh bahan inti yang sebagai benang. Butir-butir khromatinnya tidak begitu padat kalau dibandingkan dengan inti netrofil.
Eosinofil berkaitan erat dengan peristiwa alergi, karena sel-sel ini ditemukan dalam jaringan yaang mengalami reaksi alergi. Eosinofil mempunyai kemampuan melakukan fagositosis, lebih lambat tapi lebih selektif dibanding neutrofil. Eosinofil memfagositosis komplek antigen dan antibodi, ini merupakan fungsi eosinofil untuk melakukan fagositosis selektif terhadap komplek antigen dan antibodi. Eosinofil mengandung profibrinolisin, diduga berperan mempertahankan darah dari pembekuan, khususnya bila keadaan cairnya diubah oleh proses-proses Patologi.


BASOFIL

Jenis sel ini terdapat paling sedikit diantara sel granulosit yaitu sekitar 0.5%, sehingga sangat sulit diketemukan pada sediaan apus. Ukurannya sekitar 10-12 μm sama besar dengan netrofil. Kurang lebih separuh dari sel dipenuhi oleh inti yang bersegmen-segmen ata kadang-kadang tidak teratur. Inti satu, besar bentuk pilihan irreguler, umumnya bentuk huruf S, sitoplasma basofil terisi granul yang lebih besar, dan seringkali granul menutupi inti, sehingga tidak mudah untuk mempelajari intinya. Granul spesifik bentuknya ireguler berwarna biru tua dan kasar tampak memenuhi sitoplasma.
Granula basofil mensekresi histamin yang berperan dalam dalam proses alergi basofil merupakan sel utama pada tempat peradangan ini
dinamakan hypersesitivitas kulit basofil.

LIMFOSIT

Limfosit dalam darah berkuran sangat bervariasi sehingga pada pengamatan sediaan apus darah dibedakan menjadi : limfosit kecil (7-8 μm), limfosit sedang dan limfosit besar (12 μm).
Jumlah limfosit mendduki nomer 2 setelah netrofil yaitu sekitar 1000-3000 per mm3 darah atau 20-30% dari seluruh leukosit. Di antara 3 jenis limfosit, limfosit kecil terdapat paling banyak. Limfosit kecil ini mempunyai inti bulat yang kadang-kadang bertakik sedikit. Intinya gelap karena khromatinnya berkelompok dan tidak nampak nukleolus. Sitoplasmanya yang sedikit tampak mengelilingi inti sebagai cincin berwarna biru muda. Kadang-kadang sitoplasmanya tidak jelas mungkin karena butir-butir azurofil yang berwarna ungu. Limfosit kecil kira-kira berjumlah 92% dari seluruh limfosit dalam darah.
Limfosit mempunyai kedudukan yang penting dalam sistem imunitas tubuh, sehingga sel-sel tersebut tidak saja terdapat dalam darah, melainkan dalam jaringan khusus yang dinamakan jaringan limfoid. Berbeda dengan sel-sel leukosit yang lain, limfosit setelah dilepaskan dari sumsum tulang belum dapat berfungsi secara penuh oleh karena hars mengalami differensiasi lebih lanjut. Apabila sudah masak sehingga mampu berperan dalam respon immunologik, maka sel-sel tersebut dinamakan sebagai sel imunokompeten. Sel limfosit imunokompeten dibedakan menjadi limfosit B dan limfosit T, walaupun dalam sediaan apus kita tidak dapat membedakannya. Limfosit T sebelumnya mengalami diferensiasi di dalam kelenjar thymus, sedangkan limfosit B dalam jaringan yang dinamakan Bursa ekivalen yang diduga keras jaringan sumsum tulang sendiri. Kedua jenis limfosit ini berbeda dalam fngsi immunologiknya.
Sel-sel limfosit T bertanggung jawab terhadap reaksi immune seluler dan mempunyai reseptor permukaan yang spesifik untuk mengenal antigen asing. Sel limfosit B bertugas untuk memproduksi antibody humoral antibody response yang beredar dalam peredaran darah dan mengikat secara khusus dengan antigen asing yang menyebabkan antigen asing tersalut antibody, kompleks ini mempertinggi fagositosis, lisis sel dan sel pembunuh (killer sel atau sel K) dari organisme yang menyerang. Sel T dan sel B secara marfologis hanya dapat dibedakan ketika diaktifkan oleh antigen.

MONOSIT

Jenis sel agranulosit ini berjumlah sekitar 3-8% dari seluruh leukosit. Sel ini merupakan sel yang terbesar diantara sel leukosit karena diameternya sekitar 12-15 μm. Bentuk inti dapat berbentuk oval, sebagai tapal kuda atau tampak seakan-akan terlipat-lipat. Butir-butir khromatinnya lebih halus dan tersebar rata dari pada butir khromatin limfosit.
Sitoplasma monosit terdapat relatif lebih banyak tampak berwarna biru abu-abu. Berbeda dengan limfosit, sitoplasma monosit mengandung butir-butir yang mengandung perioksidase seperti yang diketemukan dalam netrofil.
Monosit mampu mengadakan gerakan dengan jalan membentuk pseudopodia sehingga dapat bermigrasi menembus kapiler untuk masuk ke dalam jaringan pengikat. Dalam jaringan pengikat monosit berbah menjadi sel makrofag atau sel-sel lain yang diklasifikasikan sebagai sel fagositik. Didalam jaringan mereka masih mempunyai membelah diri. Selain berfungsi fagositosis makrofag dapat berperan menyampaikan antigen kepada limfosit untuk bekerjasama dalam sistem imun.

3. TROMBOSIT (Keping Darah)

Walaupun amanya menunjukan bahwa merupakan sebuah sel, namun sebenarnya tidak memenuhi syarat sebagai sebuah sel yang utuh karena tidak memiliki inti. Oleh karena itu dinamakan keping darah. Berbentuk sebagai keping-keping sitoplasma berukuran 2-5 μm lengkap dengan membran plasma yang mengelilinginya. Trombosit ini khusus terdapat dalam darah mamalia. Untuk menentkan jumlahnya, tidak begit mudah karena trombosit mempunyai kecenderungan untuk bergumpal. Diperkirakan jumlahnya sekitar 150-300ribu setiap μl, sedang umurnya sekitar 8 hari.
Pada sediaan apus darah, trombosit sering terdapt bergumpal . Setiap keping tampak bagian tepi yang berwarna biru muda yang dinamakan Hialomer dan bagian tengah yang berbutir-butir berwarna ungu dinamakan granulomer atau khromomer. Hialomer mempunyai tonjolan-tonjolan sehingga bentknya tidak teratur.

Bahan Kuliah Mahasiswa FKG-UNPAD
Sumber : Prof. Subowo dr., Msc., PhD